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We study nonequilibrium fluctuation theorems for classical systems in the presence of a time-reversal
symmetry-breaking field and nonconservative forces in a stochastic as well as a deterministic setup. We
consider a system and a heat bath, called the combined system, and show that the fluctuation theorems are valid
even when the heat bath goes out of equilibrium during driving. The only requirement for the validity is that,
when the driving is switched off, the combined system relaxes to a state having a uniform probability measure
on a constant energy surface, consistent with microcanonical ensemble of an isolated system.
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I. INTRODUCTION

Understanding thermodynamics of irreversible processes
from time reversible microscopic dynamics has been a sub-
ject of great interest since the time of foundation of statistical
physics. A fair amount of progress has been made since then,
especially through the recently discovered fluctuation theo-
rems �1–6�. The fluctuation theorems give a quantitative
measure of irreversibility in terms of asymmetries in the
probability distributions of various quantities in a driven sys-
tem, e.g., heat produced in a sheared fluid �1–3�, heat ex-
changed between a hot and a cold body being in contact
�7,8�, etc. These nonequilibrium quantities, usually termed as
“entropy production” in an irreversible process �9–13�, are
on average nonnegative and give an insight into the second
law of thermodynamics. The fluctuation theorem was origi-
nally derived for deterministic thermostatted dynamics �3�
and later for stochastic one, such as Langevin dynamics �9�
and Markovian jump processes �10�.

Closely connected to the fluctuation theorems, there are
two remarkable relations, called the Jarzynski equality
�14–16� and the Crooks theorem �17�, which involve fluctua-
tion of work done on a system driven arbitrarily far away
from equilibrium by varying an external parameter. Consider
a system which is initially at an equilibrium state A at tem-
perature T and coupled to an external parameter ��t�. The
system is driven out of equilibrium by varying ��t� in a time
interval 0� t��, where ��t� is constant outside this time
interval. In this process, called forward process for a fixed
protocol ��t�, an amount of work W is done on the system.
The system eventually relaxes to an equilibrium state B at
same temperature T. In the reverse process, the system is
driven from the initial equilibrium state B for a reverse pro-
tocol ���− t� and eventually the system relaxes to the equi-
librium state A. The Jarzynski equality relates average of
exp�−�W� performed over nonequilibrium trajectories to
equilibrium free energy difference �F=F�B�−F�A� as

�exp�− �W�� = exp�− ��F� , �1�

where F�A� and F�B� are equilibrium free energies of the
system at states A and B, respectively, and �=1 /kBT, with
kB the Boltzmann constant. The Crooks theorem relates the

ratio of the probabilities of work done W for the forward
process and that for the reverse process

PF�W�
PR�− W�

= e��W−�F�, �2�

where PF�W� and PR�W� are the probability distributions of
work for the forward and the reverse processes, respectively.

Dissipative mechanism of a heat bath is crucial for under-
standing irreversible phenomena and the fluctuation theo-
rems �18� and is modeled in various ways, such as by em-
ploying deterministic thermostatted dynamics �2,3�,
stochastic Langevin dynamics satisfying the fluctuation-
dissipation theorem �9,19–21�, or Markov dynamics satisfy-
ing detailed balance with respect to canonical measure
�17,22�. However, in these cases, the heat bath is not consid-
ered explicitly and is assumed to be always in equilibrium. In
a realistic scenario, heat generated by a driving force is con-
tinuously dissipated to the heat bath and consequently the
portion of the heat bath in the vicinity of the system goes
away from equilibrium during driving �23,24�.

It is therefore important how one employs a heat bath to
take into account the nonequilibrium effect of the bath. Re-
cently, there is a prescription of modeling a driven system,
possibly in contact with a nonequilibrium heat bath, by ap-
plying Jaynes’ principle of entropy maximization �25� to
nonequilibrium trajectories with a macroscopic flux con-
straint �26–28�. However, we follow a different path where
we explicitly consider a system and a heat bath combined
either obeying microscopic Newtonian dynamics or obeying
stochastic dynamics with symmetries of the microscopic
Newtonian dynamics preserved. The work fluctuation rela-
tions have been studied along this line before for classical
Hamiltonian dynamics �29,30� as well as stochastic dynam-
ics �31�, but any time-reversal symmetry-breaking fields or
nonconservative forces have not been considered. Recently,
the fluctuation theorem involving particle current has been
studied in a case of quantum-mechanical transport of elec-
trons across a quantum dot in the presence of a time-
independent magnetic field �32�.

In this paper, we generalize the fluctuation theorems for
classical systems in the presence of a time-reversal
symmetry-breaking field, such as an external magnetic field,
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and nonconservative forces which cannot be derived from
gradient of scalar potentials. We consider a system and a heat
bath, combined, in a deterministic as well as a stochastic
setup and we show that the fluctuation theorems are valid in
the presence of time-reversal symmetry-breaking fields and
nonconservative forces even when the heat bath goes out of
equilibrium during the driving. The validity only requires
that �1� in the absence of driving, the system and the heat
bath, combined, relax to a state with a uniform probability
measure on a constant energy surface and �2� there exists a
time-reversal operation under which work performed on the
system is odd. Although we specifically consider an external
magnetic field in the paper, the results are also applicable to
other time-reversal symmetry-breaking fields, e.g., a Coriolis
force present in a rotating system.

In a deterministic setup, we consider a system obeying
Newtonian dynamics and we prove the fluctuation theorems
using the fact that Liouville’s theorem is valid even in the
presence of an external time-dependent magnetic field as
well as other nonconservative forces. We also extend our
analysis to stochastic dynamics in the presence of a time-
reversal symmetry-breaking field in a microcanonical setup.
We consider an isolated system governed by Markovian dy-
namics where there is violation of detailed balance with re-
spect to a uniform measure, i.e., forward and corresponding
reverse transition probabilities are not equal in general. Re-
versing the time-reversal symmetry-breaking field results in
dynamics where all forward and corresponding reverse tran-
sition probabilities are interchanged with each other. Al-
though detailed balance is violated, we prove the fluctuation
theorems only requiring that the steady-state measure of an
isolated system is uniform on a constant energy surface.

We primarily focus on the work fluctuation relations, i.e.,
the Jarzynski equality and the Crooks fluctuation theorem.
The system is driven by varying a control parameter of an
external potential or �and� by nonconservative forces. For
systems obeying Newtonian dynamics, the driving force may
be due to a nonconservative electric field induced by an ex-
ternal time varying magnetic field in addition to other non-
conservative forces. The work fluctuation theorems have re-
cently been studied for a few specific cases of a single
Brownian particle in the presence of both time-independent
�33,34� and time-dependent �35� magnetic fields. However,
we formulate the problem in a more general setting, taking
into account the system and the heat bath degrees of freedom
explicitly. Note that our analysis is applicable only to the
classical systems consisting of particles which do not have
any intrinsic magnetic moment.

Here is a brief outline of the paper. In Sec. II, we study
systems obeying Newtonian dynamics in the presence of an
external magnetic field and some other nonconservative
force fields. In Sec. III, we give a general proof of the fluc-
tuation theorems for stochastic systems in the absence of
detailed balance in a microcanonical setup. In Sec. IV, we
then illustrate the ideas using two simple stochastic models.
In Sec. V, we generalize the results for other intensive ther-
modynamic variables, e.g., pressure and chemical potential
which determine the initial and final equilibrium states of the
system in contact with a heat bath.

II. NEWTONIAN DYNAMICS

First, we study the nonequilibrium fluctuation theorems in
a general deterministic framework for a system and a heat
bath combined, called the combined system �CS�. We con-
sider the CS, which is governed by microscopic Newtonian
dynamics, in the presence of an external magnetic field
B� �r� , t� and a nonconservative force field f��r� , t�. Force fields
in general may be dependent both on position r� and time t.
The nonconservative force f��r� , t� cannot be derived from
gradient of a scalar potential. In addition, there may be con-
servative forces present in the CS which can be derivable
from gradient of scalar potentials. A microstate of the CS is
denoted by a variable Y which contains positions and veloci-
ties of all particles, i.e., Y��r�1 ,r�2 , . . . ,v�1 ,v�2 , . . .���r�i ,v� i	,
where r�i and v� i are position and velocity of ith particle in the
CS, respectively. Newton’s equations of motion for ith par-
ticle can be written as

r�̇i = v� i, �3�

miv�̇ i = − �� r�i
V�r�i,��t�� + qiv� i � B� �r�i,t� − qi

�A� �r�i,t�
�t

+ f��r�i,t� ,

�4�

where mi and qi are mass and charge of the ith particle,
V�r� ,��t�� is total scalar potential at position r� due to the
interparticle interaction potentials as well as an external po-
tential with a time-dependent control parameter ��t�, �� r�i

is

the gradient operator with respect to coordinate r�i, and A� �r� , t�
is the vector potential at position r� and time t due to the
external magnetic field B� �r� , t� which can be written as curl of
the vector potential, i.e., B� �r� , t�=��A� �r� , t�. The third term
in the right-hand side of Eq. �4� is due to the time varying
magnetic field B�r� , t� which induces a nonconservative elec-
tric field, −�A� /�t. The induced electric field, like f�r� , t�, can-
not be derived from gradient of a scalar potential.

It is important to note that, when the nonconservative
force field f�r� , t� is present, there is no Hamiltonian for the
CS and consequently Eqs. �3� and �4� cannot be derived
using a familiar Hamiltonian prescription of classical me-
chanics �38�. However, the microscopic Newtonian equa-
tions of motion are still invariant under time reversal with
the direction of the magnetic field also reversed, i.e., as t
→−t, v� i→−v� i, and B� �r��→−B� �r�� �equivalently A� �r��
→−A� �r���, Eqs. �3� and �4� remain unchanged. Therefore, for
any trajectory Y�t���r�i�t� ,v� i�t�	 with a fixed protocol
���t� ,B� �r� , t� , f��r� , t�	 in a time range −T� t�T, there exists a

reverse trajectory Ỹ�t���r�i�−t� ,−v� i�−t�	 for the correspond-
ing reverse protocol ���−t� ,−B� �r� ,−t� , f��r� ,−t�	. Note that in
the time-reversal operation mentioned above, directions of
the nonconservative forces, f as well as −�A /�t, are un-
changed.

In the subsequent discussions, we consider a process in a
time interval −T� t�T, where T is very large compared to
any other time scales. We assume that the magnetic field
B� �r� , t�, the external parameter ��t�, and the nonconservative
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force field f��r� , t� couple only to the system. The fields B� �r� , t�
�or equivalently the vector potential A� �r� , t��, ��t�, and f��r� , t�
are varied according to a fixed protocol only in time interval
0� t��, where ��T. Otherwise B� and � are kept constant
and f�=0 outside the interval 0� t��.

Although there is no Hamiltonian in the presence of non-
conservative forces, energy function of the CS, in terms of
positions and velocities, can be defined as

E��r�i,v� i	� = 
�
i

1

2
miv� i

2� + V��r�i	,��t�� , �5�

where the first term is the total kinetic energy and the second
term V��r�i	 ,��t�� is the total potential energy, containing both
the interaction pair potentials dependent on relative position

r�i−r� j
 between any pair of particles i, j and an external po-
tential with a control parameter �. The total energy of the
CS, defined in terms of positions and velocities, does not
depend on the external magnetic field. However, a time vary-
ing magnetic field does change the energy of the CS because
of the work performed by an induced nonconservative elec-
tric field �A� �r�i , t� /�t. This can be seen as following: using
Eqs. �3� and �4�, the rate of change of total energy E of the
CS can be written as

d

dt
�E��r�i,v� i	�� = �

i
v� i · F� i + ��V/����̇ , �6�

where F� i= �−qi�A� �r�i , t� /�t+ f��r�i , t�� is sum of all the external
nonconservative forces acting on ith particle of the CS. This
implies that the rate of change of total energy of the CS
equals to the rate of work W done by all the external forces
on the system, i.e., �dE /dt�= �dW /dt�. Total work W per-
formed on the system can be calculated as W
=�−T

T �dE /dt�dt or

W = �
0

� 
dE

dt
�dt , �7�

since �dE /dt�=0 outside the time interval 0� t��. The rate
of change of energy is clearly odd under time reversal, i.e.,
�dE /dt�→−�dE /dt� as t→−t, v� i→−v� i, and A� →−A� , because
��A� /�t� is even and d� /dt is odd under time reversal. In
other words, total work performed equals to the difference in
total energy between the final and the initial points of a tra-
jectory and therefore total work is odd under time reversal,

WF�Y�t��=−WR�Ỹ�t��.
Let us now consider time evolution of phase-space den-

sity 	�Y� at a phase-space point Y��r�i ,v� i	. From the equa-
tion of continuity, one obtains that the rate of change of
phase-space density 	�Y� equals to the divergence of local

phase-space current density 	Ẏ, i.e., one gets the local con-
servation equation �36�

�	

�t
+

�

�Y
�	Ẏ� = 0, �8�

where we have denoted the divergence of the phase-space

current as ��	Ẏ� /�Y=�i,����	ṙi,�� /�ri,�+��	v̇i,�� /�vi,��,

where ri,� and vi,� are �th Cartesian components ��=1,2 ,3
in three dimensions� of the position vector r�i and the velocity
vector v� i, respectively. Taking derivative explicitly with re-
spect to the phase-space point Y, Eq. �8� can be rewritten as

�	

�t
+ Ẏ · 
 �	

�Y
� + 	

�Ẏ

�Y
= 0, �9�

where Ẏ · ��	 /�Y�=�i,��ṙi,���	 /�ri,��+ v̇i,���	 /�vi,��� and

the phase-space compression factor �Ẏ /�Y
=�i,����ṙi,� /�ri,��+ ��v̇i,� /�vi,���. Since the right-hand side
of Eq. �3� is independent of r�i, taking partial derivative of
Eq. �3� with respect to the position coordinate, one gets
��ṙi,� /�ri,��=0. Note that the second term in the right-hand
side of Eq. �4� depends on v� i only through the cross product
with the external magnetic field vector B� and therefore par-
tial derivative ��v� i�B� �� /�vi,�=0, where �v� i�B� �� denotes
�th Cartesian component of the vector �v� i�B� �. Since all
other terms in the right-hand side of Eq. �4� are independent
of v� i, taking derivative of Eq. �4� with respect to the velocity
coordinates, one gets ��v̇i,� /�vi,��=0. This implies that the

phase-space compression factor �Ẏ /�Y=0 and, therefore,
from Eq. �9�, one arrives at Liouville’s theorem

d	

dt
= � �	

�t
+ Ẏ · 
 �	

�Y
�� = 0. �10�

The above equation is an important statement which says
that, even in the presence of a time-dependent external mag-
netic field and other time-dependent nonconservative forces,
a set of phase-space points flows like an incompressible fluid
under microscopic Newtonian time evolution equations.
Given that the phase space is incompressible, the CS at t
= 
T, with f�=0=−��A� /�t� and �=const, can be considered
to have a uniform �microcanonical� measure on a constant
energy surface, E�Y ,��=const.

One can now prove the Crooks theorem by using Liou-
ville’s theorem that the phase space is incompressible and the
property that total work performed on the CS is odd under
simultaneous reversal of time and the magnetic field. Let us
denote the probability distributions of work W, P�W ;��t��
� PF�W� and P�W ; �̃�t��� PR�W�, respectively, for a forward
protocol ��t�����t� , f��r� , t� ,B� �t�	 and corresponding reverse
protocol �̃�t�����−t� , f��r� ,−t� ,−B� �−t�	. Now, following the
arguments along the line of Refs �30,31�, we consider a set A
of initial phase-space points at time t=−T which evolves
from a constant energy surface with energy E to a set of
points A� of the final phase space points of a constant energy
surface with energy E+W at time t=T for driving under the
forward protocol ��t�. Total work performed on the system
in this process is W and the probability distribution of work
PF�W�=��A� /
�E�, where ��A� is the phase-space volume
of the set A and 
�E� is the phase-space volume of the
constant energy surface with total energy E. Now, for any
trajectory with the forward protocol ��t�, there exists a
unique time-reversed trajectory with the reverse protocol
�̃�t� and work performed along a time reversed trajectory,
initially starting from one of the set of phase-space points AR�
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obtained by velocity reversal of the set A�, is negative of the
work performed for the corresponding forward trajectory.
Therefore, for the reverse trajectories, the phase space trans-
forms from the energy surface with energy E+W to an en-
ergy surface with energy E. Then, the probability distribution
PR�−W� can be written as PR�−W�=��AR�� /
�E+W�. Now,
using Liouville’s theorem that phase space is incompressible,
we have ��A�=��A�� and then using ��A��=��AR�� that
phase-space volume does not change under reversal of ve-
locities, one obtains the ratio of the probabilities of works W
and −W as PF�W� / PR�−W�=
�E+W� /
�E�. The ratio can
also be written as

PF�W�
PR�− W�

=
Pst„Y�− T�,��0�…
Pst„Y�T�,����…

, �11�

where Pst�Y ,��=1 /
�E�Y ,��� is the initial or the final equi-
librium probability distribution of the CS. Note that Pst�Y ,��
is independent of the external magnetic field B� as the total
energy E given in Eq. �5� and therefore 
�E� does not de-
pend on B� .

At this point, one can separate the system from the heat
bath by defining entropy and temperature of the CS which
has a uniform probability measure on a constant energy sur-
face. The probability Pst�Y ,�� of a microstate of the CS, at
t= 
T, is inverse of phase-space volume 
�E� of a constant
energy surface with energy E, i.e., Pst=1 /
=exp�−S /kB�,
where S is defined as entropy. We set the Boltzmann constant
kB=1 afterwards. Partitioning the CS into two parts, the sys-
tem and the heat bath with energies � and �E−��, respec-
tively, one can write Pst�Y ,��= ��eSB�E−��+S��,��d��−1, where
SB�E−�� and S�� ,�� are entropies of the heat bath and the
system, respectively. We have here assumed the interaction
energies between the system and the bath to be much smaller
than energy of either the system or the bath. Now introduc-
ing inverse temperature � of the heat bath, �=�SB�E� /�E,
and expanding SB�E−�� in leading order of � /E, SB�E−��
=SB�E�−��+O�� /E� in the limit ��E, one gets Pst�E ,��
=e−SB�E�e�F��� where the Helmholtz free energy of the system
F���=−�1 /��ln��e−��eS��,��d��, with eS��,�� the density of
states of the system with energy �.

From conservation of energy, we have E�T�= �E�−T�
+W�, where E�−T�=E�Y�−T� ,�0�, E�T�=E�Y�T� ,���, and W
is total work performed for the forward protocol. Writing
probabilities of the initial and final microstates, respectively,
as Pst�Y�−T� ,�0�=e−SB�E�−T��e�F���0�� and Pst�Y�T� ,�����
=e−SB�E�−T��e−�We�F������, one gets the ratio of probabilities of
the final and initial equilibrium microstates of the CS as

Pst„Y�− T�,��0�…
Pst„Y�T�,����…

= e��W−�F�, �12�

where � is inverse equilibrium temperature of the heat bath.
Note that writing Pst�Y�−T� ,��0�� / Pst�Y�T� ,�����
=exp��SCS� in the left-hand side of Eq. �12�, one obtains the
thermodynamic relation T�SCS=W−�F, where �SCS is
change in total entropy SCS of the CS, �F is change in free
energy of only the system, and temperature T=1 /� �37�.
Now substituting the above ratio of the probabilities into Eq.
�11�, one obtains the Crooks theorem in the presence of a

time-dependent external magnetic field and a nonconserva-
tive force

P„W;��t�,B� �t�…

P„− W;��− t�,− B� �− t�…
= e��W−�F�. �13�

The Jarzynski equality �exp�−�W��=exp�−��F� follows by
integrating the Crooks theorem �17�.

The Crooks theorem has a simpler form when � is kept
constant �implying �F=0�, f�=0 throughout, and only the
magnetic field B� �t� varies in a time-symmetric cycle, where
B� �t�=B� ��− t� with initial and final values of B� =0. Consider
an electrical circuit which is symmetric with respect to B� �t�,
e.g., see Fig. 1, where a ring is placed in a uniform time-
dependent magnetic field in the direction perpendicular to
the ring. The time varying magnetic field induces an oscil-
lating electric field and an electric current in the circuit. For
any finite number of such cycles, the induced electric field
−�A� /�t performs work W on the system and thus generates
heat in the circuit. In this case, due to the geometric symme-
try, the probability distribution of work is same for B� �t� and
−B� �t� and only depends on the magnitude of B� , i.e., PF�W�
= PR�W�� P�W ; 
B� 
�. Since B� varies in time-symmetric
cycle, one finally arrives at the Crooks theorem
P�W ; 
B� 
� / P�−W ; 
B� 
�=exp��W� which gives an estimate of
irreversibility of the heat produced in an alternating electric
current-carrying circuit.

The fluctuation theorems can be similarly extended to the
cases where there are a Coriolis force 2m��� �v�� and a cen-
trifugal force m�� � ��� �r�� acting on a particle of mass m
�38�, �� being angular velocity of the rotating system, in ad-
dition to an external magnetic field. The fluctuation theorems
are still valid provided that one reverses the direction of the
angular velocity �� as well as the magnetic field B� . This is
because even if one adds the centrifugal and Coriolis forces
in Eq. �4�, the phase space is still incompressible, i.e.,

�Ẏ /�Y=0.

III. STOCHASTIC DYNAMICS

In this section, we consider a system and a heat bath
combined �CS� in a general stochastic framework. Stochas-
ticity may arise due to incomplete knowledge of some of the
degrees of freedom in the original deterministic system �40�.
Due to incomplete knowledge of the degrees of freedom, a

Time dependent magnetic field

t=0 t=τ t

B=Curl A(r,t)

A(r, t)

FIG. 1. Electric current flows in a ring due to a time-dependent
magnetic field B� �r� , t�=��A� �r� , t�, perpendicular to the ring, where
the vector potential A� �r� , t� at position r� varies with time t.
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system is described by some coarse-grained variables and is
governed by a stochastic dynamics. We consider a Markov-
ian dynamics of the CS, specified by transition probability
w�Y� 
Y�dY�, from a configuration Y at time t to any con-
figuration in the volume element dY� around Y� at time t
+�t, where the degrees of freedom of the CS are denoted as
Y�t� at time t. Transitions are allowed on a constant energy
surface of the CS. In subsequent discussion, we consider a
class of models where, in the absence of driving, a uniform
�microcanonical� measure is realized on a constant energy
surface of the isolated CS.

Transition probabilities are chosen so that they obey sym-
metries and conservation laws of underlying microscopic dy-
namics. The degrees of freedom Y�t���Y+ ,Y−	 may be
identified as two sets of stochastic variables, Y+ �e.g., posi-
tion� and Y− �e.g., velocity�, and there exists a Y��Y+ ,
−Y−	 for any given Y. In the presence of a time-reversal
symmetry-breaking field, such as an external magnetic field
B� , we impose a condition on the transition probabilities as
given below

w�Y�
Y;B� � = w�Y
Y�;− B� � . �14�

The above condition can be taken as definition of a magnetic
field in a stochastic setup where reversing the magnetic field
results in interchanging forward and corresponding reverse
transition probabilities with each other. Indeed, under suit-
able assumptions, the transition probabilities chosen above
can be derived for a closed isolated classical system gov-
erned by a microscopic Newtonian dynamics �39,40�. Note
that Eq. �14� equates transition probabilities of two different
systems: one with a magnetic field B� and the other with a
magnetic field −B� . Time reversal of a trajectory Y�t�, in a

symmetric time range −T� t�T, is defined as Ỹ�t�=Y�−t�
��Y+�−t� ,−Y−�−t�	 when t→−t. The variables Y and Y
transform to each other under time reversal where time-
reversal operation is ensured by the condition in Eq. �14�.

In the absence of a magnetic field, Eq. �14� �with B� =0�
implies extended detailed balance condition w�Y� 
Y�
=w�Y 
Y��. When Y��Y+	 contains only positionlike vari-
ables, Eq. �14� becomes w�Y+ 
Y+� ;B� �=w�Y+� 
Y+ ;−B� � which,
for B� =0, implies the condition of detailed balance
w�Y+ 
Y+��=w�Y+� 
Y+� �39�.

Note that, under the condition of Eq. �14�, an isolated CS
in general does not satisfy detailed balance. To stress the
violation of detailed balance, later in Sec. IV A, we would
specifically consider a case where the reverse transition is
not allowed and any reverse transition probability corre-
sponding to a forward one is set to be zero.

However, choice of the transition probabilities cannot be
arbitrary and one has to put some constraints so that �a� all
the states are connected to each other ensuring the Markov
process is ergodic and �b� steady-state configurations are all
equally probable. In this paper, we consider a class of sto-
chastic models which satisfy constraints �a� and �b�. For a
network of discrete states in a configuration space, a suffi-
cient condition for such a class, which we call loopwise
balance condition, can easily be formulated �see the Appen-

dix for details�. Even if the CS relaxes to a state having a
uniform measure, the state would be a nonequilibrium steady
state due to the violation of detailed balance. It is important
to note that, provided there exists a unique and uniform
steady-state measure 	�Y�=const for a Markov process with
a magnetic field B� , the Markov process with the reverse mag-
netic field −B� is well defined, i.e., the transition probabilities
are still normalized �dY�w�Y� 
Y ;−B� �=1, and the same
steady-state measure 	�Y�=const is guaranteed for the Mar-
kov process with −B� . In other words, �dYw�Y� 
Y ;B� �	�Y�
=	�Y��=const⇒�dY�w�Y 
Y� ;−B� �	�Y��=	�Y�=const, i.e.,
uniform steady-state measure is invariant under reversal of
the magnetic field. This is because the normalization condi-
tion �dY�w�Y� 
Y ;B� �=1 implies the steady-state condition
�dY�w�Y 
Y� ;−B� �=1, which can be shown by using Eq.
�14� and the transformation Y→Y. This is discussed and
illustrated in the Appendix.

We stress that the assumption of Markovian dynamics of a
system and a heat bath, combined, is weaker than that of
Markovian dynamics of only the system. Even if the com-
bined system obeys Markovian dynamics, dynamics of the
system, in lower dimensional configuration space, is non-
Markovian, in contrast to the system considered in Ref. �22�.

The total energy of the CS is denoted as E�Y ,��, where �
is an external parameter coupled only to the system. When
the CS is not driven, E�Y ,�� is conserved. Importantly, total
energy E depends explicitly only on Y and �, not on the
magnetic field B� �41� and it is an even function of Y− so that
E�Y ,��=E�Y ,��. For simplicity, we assume time t changes
in discrete step of �t and we consider a Markov chain in a
time range −T� t�T where T is very large. The parameter �
is changed from �=�0 to �=�� according to a deterministic
protocol in a finite time interval 0� t�� where ��T and
otherwise kept constant. We call it a forward protocol. A

reverse protocol is defined as ��̃t	���−t	.
An amount of work �Wt at time step t may be performed

on the system in two ways. One may usually change the
external parameter from �t to �t+��t, keeping Y fixed, and
the work performed is �Wt=E�Yt ,�t+��t�−E�Yt ,�t�. Now,
we introduce here the second way of performing work on the
system. One may also change the degrees of freedom of the
CS, at a time step t, deterministically from Yt to Yt�
=S�t�Yt�, keeping � fixed, where St is a time-reversal sym-
metric evolution operator, i.e., if Y→Y� under influence of a
nonconservative force, Y�→Y under influence of the same
force. For example, St may simply be the Newtonian time
evolution operator. We will illustrate this by using a simple
model in Sec. IV B. Work performed in this case is calcu-
lated as �Wt=E�Yt+�Yt ,�t�−E�Yt ,�t� which is the work
performed by a nonconservative force when the evolution
operator St contains such a force. The total work W per-
formed on the system is written as W=�t�Wt.

A trajectory is denoted by �Yt ,�t ,B� 	, where Yt and �t are
respective values of Y and � at time t and B� is the external
magnetic field. Given a trajectory �Yt ,�t ,B� 	, there is a

unique reverse trajectory �Ỹt , �̃t ,−B� 	 with reversed magnetic

field −B� and reverse protocol ��̃t	. Note that the trajectory
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�Ỹt , �̃t ,B� 	, without reversing B� , may not even be realizable if
some of the reverse transition probabilities are zero. From
Eq. �14�, the probabilities of a trajectory from a given initial
configuration with the magnetic field B� and that of the cor-
responding reverse trajectory with −B� are equal

P��Yt,�t,B� 	� = P��Ỹt,�̃t,− B� 	� , �15�

where P� · � denotes respective probability of a trajectory. We
call the above equation as the microscopic reversibility �MR�
condition hereafter. As a special case, when B� =0, the above
condition can be written simply as

P��Yt,�t	� = P��Ỹt,�̃t	� . �16�

We define WF��Yt ,�t ,B� 	� as work performed along a tra-
jectory �Yt ,�t ,B� 	, where WF= �E�YT ,���−E�Y−T ,�0��, the
difference in total energy of the final and initial point of the
trajectory. For a forward protocol ��t	, we define the prob-
ability distribution of work W as P�W ; ��t	 ,B� �� PF�W�
which can be written as

PF�W� = �
�Yt	

Pst�Y−T,�0,B� 0�P��Yt,�t,B� 	���WF − W� ,

�17�

where Pst�Y−T ,�0 ,B� � is the initial steady-state distribution at
time t=−T and P��Yt ,�t ,B� 	� is the probability of the trajec-

tory �Yt ,�t ,B� 	. For the reverse protocol ��̃t	 with reversed
magnetic field −B� , the probability distribution P�W ; ��−t	 ,
−B� �� PR�W� of work W can be written as

PR�W� = �
�Ỹt	

Pst�YT,��,− B� ��P��Ỹ,�̃,− B� 	���WR − W� ,

�18�

where work performed along the trajectory �Ỹt , �̃t ,−B� 	 is
WR= �E�Y−T ,�0�−E�YT ,����.

Throughout the paper, we use two symmetry relations as
following:

�1� WF��Yt ,�t ,B� 	�=−WR��Ỹt , �̃t ,−B� 	�, i.e., the work per-
formed is odd under simultaneous reversal of time and the
magnetic field.

�2� Pst�Y ,� ,B� �= Pst�Y ,��= Pst�Y ,��, i.e., the steady-state
distribution is independent of the magnetic field and invari-
ant when velocities are reversed.

To show the symmetry relation 1, one should note that
work done along a trajectory is, by definition, the difference
in total energy of the CS at the final and the initial point of
the trajectory, implying WF= �E�YT ,���−E�Y−T ,�0�� and
WR= �E�Y−T ,�0�−E�YT ,����. Now using E�Y ,��=E�Y ,��,
i.e., energy is invariant when velocities are reversed, one
obtains the symmetry relation 1. The symmetry relation 2
holds because the steady-state distribution of the CS is uni-
form on a constant energy surface where energy of the CS is
independent of the magnetic field and the uniform steady-
state distribution does not change for the reversed velocities.
Independence of the total energy on the magnetic field has

already been manifested in Eq. �5� where energy of a deter-
ministic system has been expressed in terms of positions and
velocities �41�.

Using microscopic reversibility condition of Eq. �15� and
the symmetry relation 2, changing summation indices �Yt	
→ �Ỹt	, and then using the symmetry relation 1, Eq. �17� can
be rewritten as

PF�W� = �
�Ỹt	


Pst�Y−T,�0�
Pst�YT,���

�Pst�YT,���P��Ỹt,�̃t,− B� 	�

���WR + W� . �19�

Now defining entropy and temperature of the CS, as done
before in the case of Newtonian dynamics in Sec. II, one can
write the probabilities of the initial and final microstates,
respectively, as Pst�Y−T ,�0�=e−SB�E−T�e�F��0� and Pst�YT ,���
=e−SB�E−T�e−�WFe�F����, where SB is the entropy of the heat
bath and F��� the Helmholtz free energy of the system with
the external parameter �. So the ratio of the probabilities can
be written as

Pst�Y−T,�0�
Pst�YT,���

= e��WF−�F�, �20�

where �F=F����−F��0� is the difference in the Helmholtz
free energy. Substituting the above ratio of probabilities into
Eq. �19�, one arrives at the Crooks theorem in the presence
of an external magnetic field

P�W;��t	,B� �

P�− W;��̃t	,− B� �
= e��W−�F�, �21�

where the probability distributions of work in general depend
on the magnetic field B� as the transition probabilities depend
on B� . The Jarzynski equality, �exp�−�W��=exp�−��F�, is
derived straightforwardly by integrating the Crooks theorem
�17�. Note that Eq. �21� relates the probability distributions
of work for two systems with different microscopic dynam-
ics, i.e., one system with a magnetic field B� and the other
with a magnetic field −B� . Importantly, unlike the Crooks
theorem, the Jarzynski equality is written without any refer-
ence to the magnetic field and so the Jarzynski equality is a
statement regarding a system with a particular dynamics.

The Crooks theorem takes an interesting form if geometry
of a system is symmetric with respect to the magnetic field
B� . Given this symmetry, the work probability distribu-
tions do not depend on the direction of B� , but depend only
on the magnitude 
B� 
: P�W ; ��t	 ,B� �= P�W ; ��t	 ,−B� �
� P�W ; ��t	 , 
B� 
� �similarly for the work probability distribu-

tion with reverse protocol ��̃t	�. This implies that, in this
case, the Crooks theorem holds even when the magnetic field
is same for the forward and the reverse protocols. Replacing
the index −B� by B� in Eq. �21�, one can now write the Crooks

theorem as P�W ; ��t	 ,B� � / P�−W ; ��̃t	 ,B� �=exp���W−�F��.
Note that in this case, one does not have to reverse the di-
rection of the magnetic field in the reverse protocol and
therefore the Crooks theorem expresses symmetries in the
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probability distributions of work for a system with same dy-
namics for the forward and the reverse protocols. This type
of symmetry would be illustrated in an example given in Sec.
IV A.

IV. STOCHASTIC DYNAMICS: ILLUSTRATION

In this section, we illustrate the ideas developed in the
previous section by constructing two simple stochastic mod-
els. First, we consider the effect of an external magnetic field
where, to ensure violation of detailed balance, we specifi-
cally choose reverse transition probability to be zero for any
nonzero forward transition probability. Second, we consider
a nonconservative force in a stochastic setup. Although the
two models considered in this section are just toy models for
a system and a heat bath, they nevertheless demonstrate the
dissipative and equilibrating mechanism of a heat bath and
subsequently show the validity of the Crooks theorem even
when the heat bath goes out of equilibrium during driving.

A. Time-reversal symmetry-breaking field

We take a one-dimensional ring of L+1 sites where site
i=0 is considered as the system and all other sites, 1� i
�L, are considered to be the heat bath �see Fig. 2�. At any
site i, there is an energy variable ei�0. The energy at site
i=0 is given by e0=�x where the external parameter �
couples only to the system via an internal degree of freedom
x�0. A configuration of the CS is thus specified by Y
��x ,e1 , . . . ,eL	. The dynamics is the following: a site i is
chosen randomly and a fixed amount of energy � ��1� is
transferred only in one direction �say, counterclockwise� to
the nearest-neighbor site, i.e.,

ei → ei − �; ei+1 → ei+1 + � . �22�

The total energy E=�i=0
L ei is conserved in this process.

Whenever energy e0 at i=0 is changed, the variable x is
updated accordingly: e0→e0�⇒x→x�=e0� /�. For ei��, the
energy transfer is not allowed.

There is a mean energy current in counterclockwise direc-
tion which may be considered to be due to an externally
applied field in this direction �analogous to B� �. The reverse
field corresponds to the dynamics where energy is transferred
in clockwise direction �analogous to −B� �. Since there are no
velocitylike variables, we have Y=Y and time reversal is
simply defined as Y�t�→Y�−t� as t→−t in a symmetric time
interval −T� t�T. Note that, in this case, reverse transition
probability is zero for any nonzero forward transition prob-
ability because energy is transferred only in one direction

�counterclockwise�, i.e., w�Y 
Y� ;B� �=0 for any nonzero
w�Y� 
Y ;B� ��0. Therefore, a time-reversed trajectory is pos-
sible only for the dynamics where energy is transferred in the
reverse direction �i.e., clockwise�. Clearly, the model satisfies
the microscopic reversibility w�Y� 
Y ;B� �=w�Y 
Y� ;−B� � as
given in Eq. �14� �with Y=Y� and also satisfies the symme-
try relations 1 and 2.

When � is kept constant, total energy E is conserved and
the dynamics is a totally asymmetric zero range process �42�
on a ring with a constant hopping rate where number of
particles at a site is ei /�. With total number of particles fixed
in the process, steady-state configurations are all equally
probable. This can be understood by mapping the zero range
process to a totally asymmetric simple exclusion process
�42� where all possible states are equally probable in the
steady state. In the limit of large L, probability distribution of
energy at any site i is given by the Boltzmann distribution,
P�ei�=�e−�ei, where �= ��i=0

L ei / �L+1��−1 is inverse tempera-
ture of the CS. The partition function of the system, for a
fixed value of �, can be calculated as Z���=�0

�e−��xdx
= ����−1 and the free energy is given by F���
=−�−1 ln Z.

The system is driven by changing the external parameter,
in discrete step of ��t at tth time step, from an initial value
�0 to a final value �� in time interval 0� t��. For each
increment ��t, an amount of energy �Wt is added to the
system �i=0� where �Wt= ��e0 /�����t=x��t is defined as
work performed at tth time step. Total work performed is
W=�t�Wt. We set a unit of time such that all sites are up-
dated with rate one per unit Monte Carlo time. For the re-

verse protocol, the external parameter is varied as �̃�t�
=���− t� in time interval 0� t�� from �� to �0. Note that
energy is always transferred in counterclockwise direction
both for the forward and the reverse protocols. The probabil-
ity distributions of work W for the forward and the reverse

protocols are denoted as P�W ;��� PF�W� and P�W ; �̃�
� PR�W�, respectively. Due to symmetry of the ring geom-
etry, the work distributions do not depend on the direction of
the energy transfer. We verify numerically that the Crooks
theorem is indeed satisfied, i.e., PF�W� / PR�−W�=exp���W
−�F��, with �F=F����−F��0�. In Fig. 3, we plot
PF�W� / PR�−W� as a function of W where �0=1.0, ��=11.0,

δi=0

i=1

i=L

δ
δ

δ

FIG. 2. Schematic diagram of the system and the heat bath. The
system is the site i=0 and rest of the sites, 1� i�L, constitutes the
heat bath. 0.1

1

10

100

1 3 5 7

P F
(W

)/
P R

(-
W

)

W

FIG. 3. �Color online� The ratio PF�W� / PR�−W� is plotted vs
work W in semilogarithmic scale and fitted with exp���W−�F�� for
L=100, �=1.0, �0=1.0, and ��=11.0, where �=100 and �F
= �1 /��ln��� /�0�.
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�=100, �=1.0, and L=100. The parameter � is increased in
a specific way: first, � is increased in five equal discrete steps
up to t=5, then held constant up to t=95, and again in-
creased in five equal discrete steps up to t=100. The param-
eter � is varied in this particular way to ensure that the en-
ergy fluctuations travel around the ring and can perturb the
system at site i=0 within the measurement time �=100. In
Fig. 3, the ratio PF�W� / PR�−W� fits well with exp���W
−�F��, where �F= �1 /��ln��� /�0� is the theoretical of the
difference in free energy.

B. Nonconservative force

When a nonconservative force is present in the CS, e.g., a
system of particles in a ring in contact with a heat bath and
with a force acting in counterclockwise direction as in Fig. 1,
the force field cannot be derived from the gradient of a scalar
potential and therefore cannot be absorbed in the expression
of the total energy of the CS �e.g., see Eq. �5��. In this case,
unlike changing an external parameter �, the system is
driven by changing Y→Y+�Y as discussed in Sec. III. To
illustrate this, we consider a CS which consists of L+1 lat-
tice sites in one dimension. The site i=0 has energy e0= p2,
with an internal variable p, and any other site i has energy
ei�0. The site i=0 is considered to be the system and the
rest is the heat bath. A configuration of the CS is specified by
Y��p ,e1 , . . . ,eL	 where, for any given Y, there is a
Y��−p ,e1 , . . . ,eL	. The dynamics is chosen as follows. For
1� i�L, we choose a site at random and exchange energy
between sites i and i+1 randomly

ei → q�ei + ei+1�; ei+1 → �1 − q��ei + ei+1� , �23�

where q� �0,1� is a uniform random number. The total en-
ergy E=�i=0

L is constant in this process. We update the site
i=0 slightly differently where we consider that the site i=0
can interchange energy only with site i=1. Say, energies of
the two sites, before update, are e0= p2 and e1, respectively.
We generate a random number � uniformly distributed in the
range �−pmax, pmax�, where pmax=�e0+e1. We then update the
internal variable p and energy of the site i=0,1 as given
below:

p → �; e0 → �2; e1 → �e0 + e1 − �2� . �24�

The update rule ensures that detailed balance is satisfied with
respect to a uniform measure on a constant energy surface of
the CS. Consequently, while the CS is not driven, the site i
=0 has the Boltzmann probability distribution P�p�
=exp�−�p2� /Z, where �= ��i=0

L ei / �L+1��−1 is inverse tem-
perature of the CS and Z=�−�

� dp exp�−�p2� is the partition
function.

The system is driven by changing the internal variable p
as follows: p→p+�, where ��0 is a constant �choice of the
sign of � is arbitrary�. Now, following two steps are per-
formed repeatedly: step 1—random sequential update of L
bonds of the CS using Eq. �23� and �24� and step 2—update
of the site i=0 by changing the internal variable from p to
p+�. The second step may be thought of as if the internal
variable p is like momentum of a particle and it is updated
due to effect of an external constant nonconservative force f

which changes p by a fixed amount �= fdt in a small time
interval dt. Note that, under the driving, the transition p
→p+� �also −�p+��→−p� is allowed, but the transition p
+�→p is not allowed. In other words, internal variable p
only changes in one direction, i.e., either increases �for �
�0� or decreases �for ��0� under the driving. Work �Wt
done on the system is the change in energy of the system
�i.e., site i=0� where �Wt= �p+��2− p2=��2p+�� and total
work W=�t�Wt.

The dynamics considered above is similar to the Langevin
dynamics of a Brownian particle in a thermal environment
where an external nonconservative force is acting on the par-
ticle. One should note that, given a trajectory �p�t� , �ei�t�	�,
one can define time-reversal operation in two ways, i.e., as
t→−t, �p�t� , �ei�t�	�→ �−p�−t� , �ei�−t�	�, or �p�t� , �ei�t�	�
→ �p�−t� , �ei�−t�	�. But only the first way of time reversal is
relevant here because, given a trajectory �p�t� , �ei�t�	�, the
trajectory �p�−t� , �ei�−t�	� is not realizable as p only in-
creases under the driving. However, the microscopic revers-
ibility condition in Eq. �16� is satisfied as the transition prob-
abilities have an additional symmetry, w�p� , �ei�	 
 p , �ei	�
=w�−p , �ei	 
−p� , �ei�	�, i.e., w�Y� 
Y�=w�Y 
Y��.

Following the general proof given in Sec. III, one can see
that the Crooks theorem is satisfied, P�W� / P�−W�
=exp��W�, where the free-energy change �F=0. Since the
forward and reverse protocols of driving are same in the
above example, we have used PF�W�� PR�W�� P�W� in the
Crooks theorem. For a time-dependent external nonconser-
vative force, the increment �t of the internal variable p at a
time step t will be �t= f tdt, where f t is the force at time step
t. In this case, the reverse protocol should be �f−t	 for a given
forward protocol �f t	 and one should distinguish between the
work probability distributions PF�W� and PR�W�. Then the
Crooks theorem can be written in the more general form as
PF�W� / PR�−W�=exp��W�.

V. GENERALIZATION

The fluctuation theorems can be generalized to the cases
where a system is in contact with a heat bath with pressure P
and �or� chemical potential �. Let us consider the combined
system with total energy E, volume V, and number of par-
ticles N which are globally conserved. Energy, volume, and
number of particles �, v, and n of the system fluctuate due to
interaction with the heat bath. Pressure P and chemical po-
tential � can be defined, similar to temperature, as given
below:

�P =
�SB�E,V,N�

�V
, �25�

�� =
�SB�E,V,N�

�N
. �26�

Now using the expansion of the heat bath entropy SB�E
−� ,V−v ,N−n�=SB�E ,V ,N�−��−�Pv−��n in the limit of
��E, v�V, and n�N, one can rewrite the ratio of the prob-
abilities of microstates at t= 
T, as given in Eq. �20�, as
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Pst�Y−T,�0�
Pst�YT,���

= e��WF��Yt,�t,B
�

t	�−�G�, �27�

where G�� , P ,� ,�� is the grand potential of the system in
equilibrium with a heat bath of inverse temperature �, pres-
sure P, and chemical potential �, � is an external parameter,
and �G=G����−G��0� with the grand potential G defined as

G��� = −
1

�
ln�� d�� dv� dne−���+Pv+�n�eS��,v,n,��� ,

�28�

where S�� ,v ,n ,�� is entropy of the system. Then the Crooks
theorem can be written as given below:

P„W;��t�,B� �t�…

P„− W;��− t�,− B� �− t�…
= e��W−�G�, �29�

which is obtained by replacing the Helmholtz free energy F
in Eq. �21� by the grand potential G.

VI. SUMMARY

In this paper, we have studied the fluctuation theorems for
a classical system in contact with a heat bath in the presence
of a time-reversal symmetry-breaking field and nonconserva-
tive forces in a deterministic as well as a stochastic setup. We
have shown that the fluctuation theorems are valid under the
condition that, in the absence of any driving, the system and
the heat bath, combined, relax to a state having a uniform
probability measure on a constant energy surface. The fluc-
tuation theorems have been proved in a very general setting
by using the time-reversal symmetry and the conservation
laws and accordingly defining the intensive thermodynamic
variables such as temperature, pressure, and chemical poten-
tial obtained from a microcanonical ensemble. In the deter-
ministic case of Newtonian dynamics, we have first shown
that Liouville’s theorem holds even in the presence of a time-
dependent external magnetic field and other time-dependent
nonconservative forces and then, using Liouville’s theorem,
we have proved the Crooks theorem and the Jarzynski equal-
ity in the presence of such forces. In the stochastic case,
where the combined system obeys Markovian dynamics, the
work fluctuation theorems have been shown to be valid even
when the reverse transition probabilities are not equal to the
corresponding forward transition probabilities, thus violating
detailed balance condition.
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APPENDIX

For an equilibrium system, detailed balance with respect
to a uniform �microcanonical� probability measure is a suf-
ficient condition for all states to be equally probable in the

final equilibrium state. Here we formulate a sufficient condi-
tion for having equally probable steady states for a nonequi-
librium system with finite number of states.

Although we now specifically consider the case where all
reverse transition rates to be zero for corresponding nonzero
forward transition rates �similar to the example considered in
Sec. IV A�, the following discussion can be straightfor-
wardly generalized to cases where a forward and a corre-
sponding reverse transition rate both may be nonzero. Also,
we only consider here the case where there is no velocitylike
variables, however, the generalization to such cases is
straightforward. In Fig. 4, a network in a configuration space
is shown schematically. A configuration C is denoted by a
node in the graph. Nodes are connected by drawing closed
loops, where each loop is assigned a transition rate, e.g., see
Fig. 4 where loops are assigned transition rates w1, w2, w3,
etc. If two configurations are connected by more than one
loop, each assigned with different transition rates, the total
transition rate from one configuration to another is given by
sum of the transition rates. For example, in Fig. 4, the total
transition rate from C2 to C1 is w�C1 
C2�= �w1+w2+w3�.
Similarly, w�C3 
C1�= �w1+w2�, w�C5 
C7�= �w4+w5+w6�,
etc. The resulting network is shown in Fig. 5. We call this
way of assigning a transition rate �or transition probability�
to a closed loop of configurations in a graph as loopwise
balance. Only constraint for drawing such loops is that all
nodes must be connected to each other along some path so
that the system is ergodic. Apart from this, loops are other-
wise drawn arbitrarily. Note that since the Markov process is
ergodic, it has a unique steady-state solution. There are sev-
eral ways to connect nodes satisfying the constraint of hav-
ing uniform steady-state measure and since the Markov pro-
cess is ergodic, all configurations always have equal steady-
state probabilities. To see this, consider the master equation
for the Markov process defined on a network in Fig. 4

dP�C1�
dt

= − �w1 + w2 + w3 + w6�P�C1�

+ �w1 + w2 + w3�P�C2� + w6P�C5� ,

w1
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w3

w3

w3
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w6

w

w
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w
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C

C

C

C

C

C

C
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1
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3

4

5

6

7
8
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FIG. 4. �Color online� Schematic diagram of a network in a
configuration space. Configurations are denoted as nodes
C1 ,C2 ,C3 , . . . ,C8. Nodes are connected by various closed loops,
each of which is assigned a transition rate. Transition rates assigned
to the dotted arrows should be added to get the corresponding total
transition rate.
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dP�C2�
dt

= − �w1 + w2 + w3�P�C2� + w1P�C3�

+ w2P�C8� + w3P�C4� ,

. . .

. . .

dP�C7�
dt

= − �w4 + w5 + w6�P�C7� + �w5 + w6�P�C4�

+ w4P�C8� ,

dP�C8�
dt

= − �w2 + w4�P�C8� + �w2 + w4�P�C3� . �A1�

From above set of equations, it is clear that all steady states
have equal probabilities, i.e., P�C1�= P�C2�= P�C3�= ¯

= P�C8�=const is the steady-state solution of the master

equation. Since the network is ergodic, the steady state is
also unique. Therefore, loopwise balance is a sufficient con-
dition for having a uniform steady-state measure in an er-
godic Markov process with finite number of states.

If the Markov process, as defined on the network in Fig.
5, is considered to be in the presence of a magnetic field B� ,
then the Markov process with the reverse magnetic field −B�
is defined on the same network by assigning transition rates
from one node to another in the reverse direction, i.e., just by
reversing the arrows on a network as done in Fig. 6. Note
that the transition rates assigned to loops in general depend
on the magnetic field. However, the steady-state distribution
remains uniform and thus independent of the magnetic field,
which is the symmetry relation 2 considered in Sec. III. Note
that, although the master equation changes under reversal of
the magnetic field, the steady-state solution is still un-
changed, i.e., all steady states are still equally probable.
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